Online Optimization through Mining the Offline Optimum

نویسندگان

  • Jason W.H. Lee
  • Y. C. Tay
  • Anthony K.H. Tung
چکیده

Ports, warehouses and courier services have to decide online how an arriving task is to be served in order that cost is minimized (or profit maximized). These operators have a wealth of historical data on task assignments; can these data be mined for knowledge or rules that can help the decisionmaking? MOO is a novel application of data mining to online optimization. The idea is to mine (logged) expert decisions or the offline optimum for rules that can be used for online decisions. It requires little knowledge about the task distribution and cost structure, and is applicable to a wide range of problems. This paper presents a feasibility study of the methodology for the wellknown k-server problem. Experiments with synthetic data show that optimization can be recast as classification of the optimum decisions; the resulting heuristic can achieve the optimum for strong request patterns, consistently outperforms other heuristics for weak patterns, and is robust despite changes in cost model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MOO: A Methodology for Online Optimization through Mining the Offline Optimum

Ports, warehouses and courier services have to decide online how an arriving task is to be served in order that cost is minimized (or profit maximized). These operators have a wealth of historical data on task assignments; can these data be mined for knowledge or rules that can help the decisionmaking? MOO is a novel application of data mining to online optimization. The idea is to mine (logged...

متن کامل

An Optimized Online Secondary Path Modeling Method for Single-Channel Feedback ANC Systems

This paper proposes a new method for online secondary path modeling in feedback active noise control (ANC) systems. In practical cases, the secondary path is usually time-varying. For these cases, online modeling of secondary path is required to ensure convergence of the system. In literature the secondary path estimation is usually performed offline, prior to online modeling, where in the prop...

متن کامل

Data mining methods for knowledge discovery in multi-objective optimization: Part A - Survey

Real-world optimization problems typically involve multiple objectives to be optimized simultaneously under multiple constraints and with respect to several variables. While multi-objective optimization itself can be a challenging task, equally difficult is the ability to make sense of the obtained solutions. In this two-part paper, we deal with data mining methods that can be applied to extrac...

متن کامل

Plate Heat Exchanger Optimization Using Different Approximation Assisted Multiobjective Optimization Techniques

This paper presents a comparison between different multiobjective optimization approaches that can be used to optimize the design of thermal equipment. Plate heat exchanger is taken as case study to apply different optimization techniques. The thermal-hydrodynamic characteristics of single phase turbulent flow in chevron-type plate heat exchangers with sinusoidal-shaped corrugations have been u...

متن کامل

Cut-off Grade Optimization for Maximizing the Output Rate

In the open-pit mining, one of the first decisions that must be made in production planning stage, after completing the design of final pit limits, is determining of the processing plant cut-off grade. Since this grade has an essential effect on operations, choosing the optimum cut-off grade is of considerable importance. Different goals may be used for determining optimum cut-off grade. One of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017